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1 Introduction

Algorithms are increasingly taking over price decisions on behalf of the firms
that employ them. Whereas pricing algorithms are also used in more tra-
ditional brick-and-mortar retailing, for example in supermarkets1 or gaso-
line stations,2 the strongly growing e-commerce sector3 adds to their rapid
dissemination. In its “E-commerce Sector Inquiry”, the EU Commission
(2017) reports that a majority of online firms track the prices of competitors
and two-thirds of these use algorithmic pricing software. So, algorithms are
on the rise.

While algorithms may benefit consumers,4 a major concern is that they
could weaken competition and make supracompetitive prices more likely.
The challenges associated with algorithmic pricing, in particular the risk
of tacit collusion, are widely discussed (Ezrachi and Stucke, 2016, 2017;
Harrington, 2018, 2020; Haucap, 2021; Mehra, 2016; Monopolkommission,
2018; OECD, 2017; Oxera, 2017) and seem to be high on the agenda of com-
petition authorities around the world (British Competition and Markets
Authority, 2018, 2021; Bundeskartellamt and Autorité de la Concurrence,
2019; Competition Bureau Canada, 2018).

Empirical research suggests that the pricing algorithms currently pri-
marily used in digital markets follow relatively simple pricing strategies
(British Competition and Markets Authority, 2018; Monopolkommission,
2018; Musolff, 2021; Wieting and Sapi, 2021). Static algorithms that fol-
low a manageable number of simple pricing rules appear to be common.
The lack of sophistication may actually increase the risk of tacit collu-
sion. Supracompetitive prices could become more likely by having these
algorithms induce firms to behave in a predictable and consistent man-

1See “Surge Pricing Comes To The Supermarket”, The Guardian, 4 June, 2017,
available at: https://bit.ly/3mf9IQp (last accessed on 22 October, 2022).

2 See Assad et al. (2020) and “Why Do Gas Station Prices Constantly Change?
Blame the Algorithms”, Wall Street Journal, 8 May, 2017, available at: https://on.wsj.
com/3vRCRo3 (last accessed on 22 October, 2022).

3In 2021, 74% of internet users in the EU ordered goods or services online. See 2021
Eurostat Community Survey on ICT usage in households and by individuals, available
at: https://bit.ly/3biBEga (last accessed on 22 October, 2022).

4Algorithms are ideally suited to deal with the wealth of data available online on
competitors and customers. Pricing algorithms can adjust prices, enable consistent
pricing strategies, and react immediately to any changes in the market environment
(OECD, 2017). Such efficiency gains may ultimately be good for consumers.

1

https://bit.ly/3mf9IQp
https://on.wsj.com/3vRCRo3
https://on.wsj.com/3vRCRo3
https://bit.ly/3biBEga


ner (British Competition and Markets Authority, 2018; Wieting and Sapi,
2021).5 When interacting with humans, such algorithms could facilitate
collusion. Algorithms act in a more systematic and reliable way than hu-
mans. Delegating pricing to such an algorithm reduces the strategy sets
and can thus simplify the coordination via the market (Byrne and De Roos,
2019; Kastius and Schlosser, 2021; Musolff, 2021).6

Our paper analyzes these issues in “hybrid” markets where human play-
ers and algorithms interact. We study the price level in experimental
oligopolies, where only humans interact, comparing this to the case where
one firm in the market delegates its decisions to a simple algorithm. Our re-
search question is whether the presence of an algorithm leads to an increase
in prices.

Hitherto, surprisingly few laboratory experiments have studied cooper-
ation when one or more players are computerized, and only one compares
human-computer to all-human interaction. Roth and Murnighan (1978)
and Murnighan and Roth (1983) analyze two-player prisoner’s dilemmas
when subjects know they face an algorithmic opponent.7 Duffy and Xie
(2016) have single humans play against n − 1 grim trigger players, and the
authors vary n. The participants of the experiments in Duersch et al. (2009)
play against various learning-algorithms in a Cournot-setting, and recently
Duffy et al. (2021) let participants play two-player prisoner’s dilemma su-
pergames against a grim-trigger algorithm. In Duffy and Xie (2016) and
Duffy et al. (2021), subjects know the strategy the algorithm plays. This is

5Wieting and Sapi (2021) analyze the e-commerce platform Bol.com (the largest on-
line marketplace in Belgium and the Netherlands) and identify pricing software that
was foremost “relatively unsophisticated” and “consist of a finite set of if-then state-
ments.” Wieting and Sapi (2021) conclude that “[a] secret to successful collusion may
lie in managers’ ability to commit to simple strategies”.

6Byrne and De Roos (2019) study a data set from the retail gasoline industry in an
Australian city. Their findings suggest that firms “may adopt simple pricing structures,
even in the presence of perfect price monitoring, because they are easy to experiment
with and communicate to rivals”. Musolff (2021) employs data on the pricing decisions
made by third-party sellers on the e-commerce platform Amazon and finds that “dele-
gation of pricing to simple algorithms can facilitate tacit collusion by reducing the set of
available strategies”. Kastius and Schlosser (2021) show that a simple pricing rule can
force a self-learning reinforcement algorithm to collude by plainly pricing competitively
until the algorithm “agrees” to charge a high price.

7Roth and Murnighan (1978) and Murnighan and Roth (1983) are known to be the
first to study “infinitely” repeated games in the lab by imposing a random move that
determines the end of a supergame.
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not the case in Roth and Murnighan (1978), Murnighan and Roth (1983),
and Duersch et al. (2009). The five studies have in common that they do not
have comparison treatments when the opponents are human. Finally, the
recent computer-science paper by Crandall et al. (2018) is an experiment on
human-machine cooperation in stochastic games. The paper studies how
autonomous machines learn to establish cooperative relationships with peo-
ple and other machines in repeated two-player interactions. Although the
level of human-machine cooperation is not higher than the level of human-
only cooperation, Crandall et al. (2018) demonstrate human-machine co-
operation is achievable using relatively simple reinforcement algorithms.

A second novelty of our study is that we explore the role of human
beliefs about algorithms. We vary (in a non-deceptive manner) whether or
not participants know about the presence of the algorithm. Do participants
behave differently when they are aware they are facing an algorithm? This
may indeed be the case: Studies on “algorithm aversion” show that people
avoid algorithmic advice even though the algorithm is superior to humans
(Dietvorst and Bharti, 2020; Dietvorst et al., 2016, 2015). Furthermore,
Farjam and Kirchkamp (2018) show in a laboratory asset market that
humans trade differently if they expect algorithmic traders. As a possi-
ble explanation, they suggest that human traders perceive the algorithmic
traders as behaving more rationally. De Melo et al. (2015) find that people
tend to make different decisions depending on whether they are facing a
human or a computer algorithm.8 Thus, it seems warranted to test whether
expectations about algorithms influence the behavior of participants.

To analyze these research questions, we opted for a rather simple and
transparent experimental design. In three-firm markets, participants have
two actions (high price, low price) available, so they play a three-player
prisoner’s dilemma.9 As mentioned, one of the human participants may

8The authors had people participate in experiments with virtual humans controlled
by either computer algorithms (agents) or humans (avatars), and show that having
avatars involved in decision making compared to agents has an impact on people’s deci-
sion making, such as their willingness to cooperate. For related findings on differences
in decision making, see Dijkstra et al. (1998), Weibel et al. (2008), Krach et al. (2008),
Lee (2018) and Rilling et al. (2004).

9While collusion is less likely in markets with more than two competitors, the reduced
action set may promote tacit collusion (Gangadharan and Nikiforakis, 2009). For a re-
cent survey on indefinitely repeated prisoner’s dilemma games, see Dal Bó and Fréchette
(2018). Mengel (2018) surveys one-shot and finitely repeated prisoner’s dilemmas.
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be replaced by an algorithm. The algorithm we use is a multiplayer gen-
eralization of tit-for-tat (Axelrod, 1984; Hilbe et al., 2015). It begins by
cooperating, but subsequently adapts to the level of cooperation in the
market. Tit-for-tat is cooperative, so when matched with other coopera-
tive strategies, it achieves collusive payoffs. It is also forgiving in that it
can return to cooperation after an accidental deviation and it avoids the
exploitation by defectors. That said, our algorithm is not ferociously com-
mitted to cooperating and thus seems suitable to study human-algorithm
interaction meaningfully.

We choose the specific algorithm in order to give cooperation a reason-
ably good chance. Our algorithm is comparable to the aforementioned, rel-
atively simple, programs that appear to be used in online markets (British
Competition and Markets Authority, 2018; Monopolkommission, 2018; Mu-
solff, 2021; Wieting and Sapi, 2021). Another strand of literature investi-
gates the collusive potential of rather complex self-learning reinforcement
algorithms. Whereas the learning mechanisms (often Q-learning) behind
these algorithms are hugely complicated, the strategies they produce are
memory-one — a property they share with our algorithm.10

Experiments with three firms seem promising when it comes to identi-
fying collusive effects in that duopolies can be collusive, whereas markets
with four or more firms are usually not; see Engel (2015), Fonseca and Nor-
mann (2012), Huck et al. (2004), and Potters and Suetens (2013). The evi-
dence on cooperation in three-player groups is somewhat inconclusive (and
hence a good starting point for us). While Horstmann et al. (2018) do find
some collusion in three-firm oligopolies with differentiated goods, Freitag
et al. (2020) do not find any supracompetitive outcomes in a multimar-
ket context benign to collusion. Marwell and Schmitt (1972) had already
reported that three-person prisoner’s dilemmas are substantially less coop-

10This literature shows that self-learning algorithms are able learn to play repeated-
game strategies that maximize joint profits without explicitly being instructed to do
so (Calvano et al., 2020, 2021; Klein, 2021). After an off-the-job learning phase, the
algorithms execute a memory-one pricing strategy on the market. When two such al-
gorithms interact with each other, striking levels of collusion occur. In their online
appendix, (Calvano et al., 2020) briefly report on memory-two algorithms. As the state
space disproportionally increases with a two-period memory, these algorithms perform
less collusively. Dal Bó and Fréchette (2019) and Romero and Rosokha (2019) recently
found that the strategies of human subjects in lab experiments are often memory-one.
See also Fudenberg and Karreskog (2020).
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erative than two-player experiments. Roux and Thöni (2015) demonstrate
that larger oligopolies become collusive only when targeted punishments
are available.

Our findings are as follows. The markets involving an algorithmic player
are significantly more collusive than human-only triopolies. While this
higher level of collusion raises profits for all firms in the industry, it turns
out that those firms that employ the algorithm earn significantly less profit
than their rivals. Knowing or not knowing about the presence does not
affect competition significantly. Interestingly, however, humans seem to
link cooperation to human behavior and not an algorithm.

2 Experimental Design

The stage game underlying the experiment is a three-player prisoner’s
dilemma framed as a market interaction. Players choose a high price or a
low price, so the action set for all players is {phigh, plow}. The payoffs are
derived from a Bertrand oligopoly model with inelastic demand and con-
stant marginal costs of production.11 For actions phigh = 100 and plow = 60,
the payoffs in Table 1 (which is similar to the one used in the experiment)
result.

Other firms’ prices

phigh, phigh phigh, plow plow, plow

O
w

n
pr

ic
e

phigh πc = 800 πs = 0 πs = 0

plow πd = 1,440 πf = 720 πn = 480

Table 1: Payoff table.

We run four treatments in a 2×2 design. We vary treatments with and
without algorithms and treatments with and without information on the
presence of the algorithm. See Table 2.

11Suppose there are m = 24 consumers who demand one unit of the good up to a
reservation price of 100. Each player can supply all consumers at production costs of
zero. The player who charges the lowest price serves all consumers; if several players
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Three humans Two humans,
one algorithm

Human Uncertain Algorithm Uncertain

Human Certain Algorithm Certain

Table 2: Treatment design.

In all experiments, groups of three participants constitute one market.
In the treatments labeled “Human ”, there are three human players. In
the treatments labeled “Algorithm ”, there are two human players and one
algorithm. In treatments involving an algorithm, the computer decides on
behalf of one firm. That firm is nevertheless represented by an experimental
subject, but he or she is inactive and merely obtains the payoff earned by
the algorithm.

The second treatment dimension indicates whether the participants
know the composition of the market.12 In the treatments labeled
“ Certain”, participants know from the instructions (reproduced in the
Additional Material13) whether or not an algorithm is present. In the
“ Uncertain” treatments, the participants do not know if they are part of
the Human Uncertain or the Algorithm Uncertain treatment, so they do
not know whether an algorithm is present. They are merely told that, with
a probability of 50%, one of the three subjects’ decisions is taken by an
algorithm. The algorithm is either present or not present throughout the
experiment, in all rounds and supergames. We conducted the same number
of sessions in both treatments. Thus, consistent with the instructions, there
was a 50% chance that the participants were in the Algorithm Uncertain
treatment.

The algorithm is programmed to play proportional tit-for-tat, or pTFT

(Hilbe et al., 2015). It is an n-player generalization of tit-for-tat (Axelrod,
1984): Let t be the index for time. The algorithm begins by cooperating in
the first period (t = 0) and later cooperates proportionally to the number

charge the lowest price, they split the profit equally.
12Regarding this point, our design is similar to the one in Farjam and Kirchkamp

(2018).
13Available in our Working Paper Normann and Sternberg (2022).
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of cooperators in the previous period. Accordingly, pTFT chooses the high
price with the following probabilities

prob.(p = phigh) =

 1 if t = 0
j

n−1 if t > 0

where n is the number of players including the algorithm player and j ∈
{0, 1, 2, ..., n − 1} is the number of rival players who chose phigh in the
previous period. Subjects are not told how the algorithm is programmed.
Nor are they told the algorithm’s purpose.

The treatments are implemented as repeated games, and all treatments
have three supergames.14 The subjects stay in the same market throughout
the periods of the supergames. When a new supergame begins, subjects are
randomly assigned to a new market. In other words, we have fixed match-
ing within supergames and random matching across supergames. Each
supergame lasts at least 20 periods. From the 20th period onward, a ran-
dom rule with a continuation probability of 7/10 determines whether play
continues. The number of periods in all three rounds was determined ex
ante and is the same in all sessions (24, 20 and 21 periods). Subjects knew
they would play three supergames from the instructions and they also knew
the termination probability.

3 Model

3.1 Setup

Consider a three-player game where players’ action sets are the prices
{phigh, plow}. With pi denoting player i’s price, her payoff is generally de-
noted by πi(pi, pj, pk), i, j, k ∈ {1, 2, 3}, where pj and pk are the prices of
the rivals of player i, i ̸= j, i ̸= k, j ̸= k, and where the identity of the
rival players does not matter, that is, πi(pi, pj, pk) = πi(pi, pk, pj). We use
the notation πc, πs, πd, πf and πn as above in Table 1.

14See Honhon and Hyndman (2020) for an analysis of how matching schemes and
reputation mechanisms affect cooperation in the repeated prisoner’s dilemma.
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3.2 Repeated-game Incentive Constraint

We analyze an infinitely repeated version of this game. Let time be indexed
by t = 0, ..., ∞. Future periods are discounted by the factor δ.

Suppose the three players attempt to establish collusion on the phigh

following a ‘grim-trigger’ strategy (GT ): a player chooses phigh in t = 0
and keeps charging phigh as long as no one deviated in any previous period,
otherwise she charges plow from t + 1, ..., ∞. Playing GT is a subgame-
perfect Nash equilibrium (SGPNE) if

πc

1 − δ
≥ πd + δπn

1 − δ

δ ≥ πd − πc

πd − πn
= 2

3 ≡ δGT (1)

where the subscript GT indicates that all three participants are GT players.
Suppose now there are two players attempting to establish collusion via

GT and the third player is an algorithm, committed to playing pTFT . We
analyze the incentives of a GT player to deviate. If a GT player chooses
phigh, she receives πc in t = 0, ..., ∞ in equilibrium. The profit from a one-
off deviation is πd, as before. The punishment payoff in t = 1 does change:
If player i deviates in t = 0, the price vector reads (plow, phigh, phigh) and
prompts the pTFT algorithm to cooperate with 50% in t = 1. Either
way, all players choose plow from t = 2 on. Thus, the incentive constraint
becomes

πc

1 − δ
≥ πd + δ

(
πf + πn

2

)
+ δ2πn

1 − δ
.

Solving for δ for the values employed in the experiment yields (a closed-form
solution can be obtained, but is not informative)

δ ≳ 0.69 ≡ δpT F T . (2)

Here, the subscript pTFT indicates that one of the three players is the
pTFT algorithm. Ensuring that (2) is met does not suffice for GT to be
subgame-perfect. In the Appendix, we formally prove that GT is subgame-
perfect despite the presence of the pTFT player. We summarize by com-
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paring (1) and (2):

Proposition 1. The minimum discount factor required for collusion to be
a SGPNE is lower for three GT players compared to two GT players and
one pTFT algorithm: δGT < δpT F T .

The intuition behind Proposition 1 is straightforward. GT and pTFT are
both cooperative strategies, but pTFT is more forgiving. This raises the
payoffs of a GT player after a defection and, accordingly, increases the
minimum discount factor.15

3.3 Strategic Risk

The inequalities (1) and (2) are necessary conditions for GT to be subgame-
perfect, but they do not reflect the coordination problems players face in
the presence of multiple equilibria. Taking strategic risk into account is
especially important when analyzing algorithms. The algorithm is com-
mitted to a strategy, whereas humans are not. So, the algorithm reduces
strategic uncertainty. Merely to focus on incentives in a given collusion
equilibrium and to ignore strategic risk would imply that we may miss the
collusive impact algorithms may have.

To deal with strategic uncertainty, a growing literature on repeated
prisoner’s dilemmas (Blonski et al., 2011; Blonski and Spagnolo, 2015; Dal
Bó and Fréchette, 2011, 2018; Green et al., 2015) borrows from Harsanyi
and Selten’s (1988) concept of risk dominance which can easily be applied
to symmetric coordination games with two strategies. A strategy is risk-
dominant if it is a best response to the other players mixing with equal
probability between the two strategies. We follow Blonski et al. (2011),
Blonski and Spagnolo (2015), Dal Bó and Fréchette (2011, 2018), and Green
et al. (2015) in focusing on a simplified version of the game, the choice
between two repeated-game strategies. We henceforth analyze the decision
between the collusive GT and the non-cooperative ‘always defect’ strategy
(AD). That is, players’ action sets are now the repeated-game strategies

15Nevertheless, results from experiments with self-learning algorithms suggest that
these algorithms learn to cooperate even after deviations and therefore pursue a more
forgiving strategy than GT ; see Calvano et al. (2020, section IV. C).
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GT and AD.16 Provided (1) and (2), respectively, hold, all players playing
GT and all players playing AD are equilibria of this two-action game.
Increasing δ reduces the riskiness of GT , and we solve for a new critical
discount factor, δ∗, such that playing GT is the best response given that the
other players randomize with equal probability between the two strategies
GT and AD.

Consider three players choosing between GT and AD. When playing
GT , there are two contingencies for the profit of player i in period t = 0:
Provided the other two players also play GT (which happens with a prob-
ability of 1/4), i obtains πc. If at least one other player defects (probability
3/4), i obtains πs = 0 in period t = 0. If all players including i play GT in
t = 0, i also obtains πc in all future periods t = 1, ..., ∞. If at least one
player defects in t = 0, i gets πn in periods t = 1, ..., ∞. Thus, player i’s
expected payoff from playing GT is

1
4

(
πc

1 − δ

)
+ 3

4

(
πs + δπn

1 − δ

)

If player i instead plays AD, there are three possibilities. If both other
players cooperate in t = 0 (which happens with a probability of 1/4), i

obtains πd. If one rival player cooperates and the other defects (which
happens with a probability of 1/2), i obtains πf . When both rival players
defect (probability of 1/4), i obtains πn. In all three cases, i obtains πn in
t = 1, ..., ∞. Player i’s expected payoff is

πd

4 + πf

2 + πn

4 + δπn

1 − δ

Taking the difference in expected profits of GT and AD and solving for
δ, we find that GT has a higher expected payoff than AD, if and only if

δ ≥ πd + 2πf − 3πs + πn − πc

πd + 2πf − 3πs
= 8

9 ≈ 0.89 ≡ δ∗
GT (3)

where δ∗ ∈ (0, 1) denotes the critical discount factor in the presence of
16For the simplified version of the game with only two repeated-game strategies (GT

and AD), Blonski and Spagnolo (2015) show that any collusive equilibrium is risk-
dominant if GT is risk-dominant.
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strategic risk and the subscript GT indicates that all three players are
(potential) GT players. Note that δ∗

GT > δGT strictly and that payoffs πs

and πf occur here – which is not the case for δ.
Now one of the three market participants is an algorithm committed to

playing pTFT .We analyze the choice of the other two players between GT

and AD. Suppose player i plays GT . Then there are only two contingen-
cies: the other player plays either GT or she plays AD. Expected profits
are accordingly

1
2

(
πc

1 − δ

)
+ 1

2

(
πs + δ

2(πf + πn) + δ2 πn

1 − δ

)

If player i plays AD, she gets

1
2

(
πd + δ

2
(
πf + πn

)
+ δ2πn

1 − δ

)
+ 1

2

(
πf + δπn

1 − δ

)

We find that GT has a higher expected payoff if

δ ≥ πd + πf − πc − πs

πd + πf − πn − πs
= 17

21 ≈ 0.81 ≡ δ∗
pT F T (4)

Comparing (3) and (4), we obtain:

Proposition 2. The minimum discount factor required in the presence of
strategic uncertainty is higher for three GT players compared to two GT

players and one pTFT algorithm: δ∗
GT > δ∗

pT F T .17

Whereas Propositions 1 and 2 imply contradicting effects, the existing
experimental evidence suggests that δ∗ has more explanatory power than
δ (Dal Bó and Fréchette, 2018). Blonski et al. (2011) highlight treatment
comparisons where δ and δ∗ change in opposite directions, as in our exper-
iment, and find that “the frequency of cooperation changes as predicted by
changes in δ∗, contradicting predictions based on δ” (Blonski et al., 2011,
p. 185).18

17The reader can verify that δ∗
GT > δ∗

pT F T not only for our experimental parameters,
but in general: Note that both the numerator and the denominator of δ∗

GT exceed their
δ∗

pT F T counterparts by πf + πn − 2πs > 0, hence are increasing δ∗
GT .

18Their analysis is often based on what they label as “class 2” data. In that class, the
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4 Hypotheses

An algorithm may affect human behavior via several channels. We mainly
focus on the action channel and the belief channel. These two channels may
affect behavior differently. We further consider other-regarding preferences
as a third channel.

We begin with actions. At least in the long run, human subjects will
probably be influenced by the algorithm’s actual price-setting behavior
and its responses, including the punishments it triggers, and so on. In
other words, the algorithm’s actions will matter. Our pTFT algorithm
is more collusive than the average human and this should have a positive
effect on the proportion of phigh choices. Based on Proposition 2 of our
model, we expect that the Algorithm treatments will be more collusive
than their Human counterparts. Whether this materializes also depends
on expectations about the algorithm. The Uncertain treatments, however,
are identical in terms of the instructions and the possibility of an algorithm
being present, so the beliefs cannot matter, but the actual play can. We
hypothesize:

Hypothesis 1. Cooperation rates in Algorithm Uncertain are higher than
those in Human Uncertain.

We turn to beliefs. Human subjects may expect the algorithm to play
differently than humans. Responding to this belief, humans adjust their
behavior accordingly.19 But in which direction will the belief be affected?
Farjam and Kirchkamp (2018) find that algorithms are perceived as “more
rational”, but in terms of expectations about cooperativeness this could go
either way. Some findings indicate that humans may expect the algorithm
to play less collusively than humans. Trust is an important part of success-
ful collusion, and the literature on algorithm aversion suggests that humans
trust algorithms less than other humans. News about algorithms beating

actual discount factor is above δ, but below δ∗, as is the case in our experiment.
19There is ample evidence that human subjects respond to beliefs about the action of

others. In the prisoner’s dilemma, there are two motives for defection (Ahn et al., 2001;
Blanco et al., 2014; Charness et al., 2016). Subjects fear being exploited by others, but
some may greedily also want to exploit others themselves.
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humans at Chess or Go may corroborate this. Having said that, market
interactions are not zero-sum games. As noted in the introduction, the col-
lusive potential of algorithms is at the center of a widespread debate, and
some of that debate has transpired to the popular press (see footnote 2).
Altogether, it does not seem warranted to maintain a directed hypothesis
here.

We accordingly formulate an Exploratory Research Question: Do sub-
jects expect more or less cooperation from an algorithm than from a hu-
man opponent, and how will this impact the price level? In the two Al-
gorithm treatments, the algorithm’s actions are the same, but in Algo-
rithm Certain, subjects know for sure they face an algorithm, whereas in
Algorithm Uncertain, they might still be competing with a human. For the
Human treatments, the third player is controlled by a human either way,
but in Human Uncertain, participants expect to meet an algorithm with
50% likelihood. We thus state:

Exploratory Research Question 2. Do cooperation rates differ within
the Algorithm or Human Treatments?

A third possible channel occurs when participants have other-regarding
motives. In that case, subjects may play differently against an algorithm
than against a human as a matter of principle. Upfront we note that purely
outcome-based distributional preferences may not have impact. Our Algo-
rithm treatments involve three human participants. The payout earned by
the algorithm was paid out to a (passive) human participant. Therefore,
other-regarding preferences based on monetary outcomes only cannot play
a role.20 By contrast, reciprocal behavior may actually have impact. The
literature on intentions-based social preferences shows that choices from
the same set of distributional alternatives depend on how the set was gen-
erated (Charness and Rabin, 2002). Subjects often reciprocate when they
know they are playing against a human, but reciprocity may be less pow-
erful when subjects know they are facing an algorithm (Mahmoodi et al.,
2018; Zonca et al., 2021). A model by Iriş and Santos-Pinto (2013) shows

20In this context, we note that participants with non-selfish other-regarding prefer-
ences do not necessarily cooperate more. See Hernández-Lagos et al. (2017).
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that collusion is easier to maintain when subjects are reciprocal. If recipro-
cal behavior in this sense has force, then the implications are the same as
above when subjects have skeptical beliefs (that is, when subjects expect
the algorithm to be less cooperative). Whereas we leave the Exploratory
Research Question 2 unaltered, we note that the interpretation of any dif-
ferences in the data may be due to either motive (skeptical beliefs or lack
of reciprocity towards the algorithm).

Concluding, we hypothesize about the two Certain treatments. The
actual play of the algorithm, on the one hand, and beliefs, on the other,
imply an ambiguous effect of algorithms. We nevertheless hypothesize that
the use of algorithms will have a positive overall impact on collusion because
we provide ample opportunity for learning (three relatively long repeated
games). Given these learning opportunities, even algorithm-averse subjects
may update their beliefs and adjust them according to the more cooperative
behavior of the algorithm. We hypothesize:

Hypothesis 3. Cooperation rates in Algorithm Certain are higher than
those in Human Certain.

5 Procedures

Subjects were recruited from pools of subjects who had previously volun-
teered to participate in lab experiments. The experiments involved 309
participants in total. None of the subjects participated in more than one
session. We had 16 sessions in total, four for each of the four treatments,
see Table 3. The session size varied between 12 and 30 participants. The
experimental sessions were conducted at labs in Düsseldorf and MPI Bonn
between August 2019 and October 2020. No sessions were conducted be-
tween early March and mid-July 2020, due to the pandemic. Sessions from
mid-July 2020 on were conducted under (by then) common hygiene rules.
See Table A.1 in the Additional Material for session details.

Upon arrival at the laboratory, subjects were randomly assigned to a
cubicle, using tokens with the cubicle numbers. After a sufficient num-
ber of participants had arrived, the experiment started and participants

14



Treatment # sessions # subjects # markets
Human Certain 4 72 24
Human Uncertain 4 75 25
Algorithm Uncertain 4 86 28
Algorithm Certain 4 78 26

Table 3: Number of sessions, participants and markets per treatment.

received a hard copy of the instructions in German. While reading the
instructions, subjects were allowed to ask questions privately in their cu-
bicles. Afterwards, control questions made sure everyone had understood
the task.

The decision-making parts were conducted as follows. We programmed
the experiment in z-Tree (Fischbacher, 2007). In each period, the subjects
had to decide by clicking a button whether they wanted to set phigh or plow.
After everyone had decided, an information screen displayed the choices of
all three firms in the market, always in the same order21, and informed sub-
jects about their payoff. At the end of a supergame, the individual overall
payoff for that supergame was displayed and the subjects were informed
that they would now be assigned to a new market, unless it was the last
supergame.

We used an Experimental Currency Unit, where 1,000 ECU corre-
sponded to 1 Euro. One of the three supergames was randomly chosen
for payout. At the end of the third supergame, the subjects were informed
about the supergame selected for payout and their total earnings.

In the Uncertain treatments, we further asked participants whether
they thought an algorithm was present in the experiment. This was done
at the end, after the last period of the last supergame. Subjects had to
enter a number between zero and 100, expressing how confident they were
that an algorithm was in the market. They were paid up to 2 euros for
a correct guess: Given a guess x ∈ {0, 1, 2, ..., 100} that an algorithm was
present, the payoff was 2x/100 if this was actually the case and 2 − 2x/100
if not. Participants for whom the algorithm decided were paid 1 euro flat
instead.

21This implies that subjects were able to track the individual actions of each opponent.
This might facilitate understanding rivals’ strategies and possibly also to detecting the
algorithm.
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Figure 1: Cooperation rates over time (periods 6 to 19).

The sessions lasted for about 60 minutes. The average payment was
17.73 euro, including a show-up fee.

6 Results

6.1 Overview

Figure 1 shows how cooperation rates22 in the different treatments develop
over time and supergames.23 Generally, cooperation increases across su-
pergames: In supergame 1, cooperation rates vary roughly between zero
and less than 30%, whereas in supergame 3 they vary between 20 and more
than 50%. It appears participants learn to collude tacitly with repetitions
of the supergame, confirming the results of Bigoni et al. (2015), Dal Bó
and Fréchette (2011, 2018), and Fudenberg et al. (2012). A closer look

22The cooperation rate is defined as the number of phigh choices divided by the total
number of choices, given a treatment or period of play.

23To exclude restart and endgame effects, we focus on periods 6 to 19. The same
graph including all periods can be found in Figure A.1 in the Additional Material.
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SG 1 SG 2 SG 3 All

Human Uncertain 0.123 0.221 0.218 0.187
(0.328) (0.415) (0.413) (0.390)

Algorithm Uncertain 0.111 0.395 0.506 0.337
(0.315) (0.489) (0.500) (0.473)

Human Certain 0.233 0.275 0.277 0.262
(0.423) (0.447) (0.448) (0.440)

Algorithm Certain 0.162 0.303 0.381 0.282
(0.369) (0.460) (0.486) (0.450)

Standard deviations in parentheses.

Table 4: Average cooperation rates (periods 6 to 19) in supergames (SG)
1 to 3 and across all supergames.

reveals that cooperation rates improve for all treatments in supergame 2,
but when comparing supergames 2 and 3, only the treatments involving an
algorithm increase substantially.24

Complementing Figure 1, Table 4 shows the cooperation rates averaged
across periods 6 to 19. We note that the Algorithm treatments have higher
averages than their Human counterparts in supergames 2 and 3. Taking
all supergames into account, the highest cooperation rate is observed in Al-
gorithm Uncertain (0.337), followed by Algorithm Certain (0.282) which,
in turn, exhibits more cooperation than Human Certain (0.262). We find
higher cooperation in Human Certain than in Human Uncertain (0.187).
This order does not change if we include all periods or focus only on the de-
cisions of human subjects (that is, if we exclude the algorithms’ decisions).
See Table A.2 and Table A.3 in the Additional Material for details.

How successful are the firms in actually establishing the collusive out-
come? Figure 2 shows the percentages of three outcomes for the four treat-
ments: “tacit collusion” indicates successful cooperation – all firms choose
phigh; “competition” means that all firms charge plow; and “failed collu-
sion” occurs when at least one firm chooses plow and at least one firm tried

24There is a very minor increase of cooperation in Human Certain by 0.2 percentage
points when comparing supergames 2 and 3. See Table 4.
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Figure 2: Collusive and competitive outcomes (periods 6 to 19).

to collude – this is miscoordination. Again, it becomes clear that, from
the second supergame on, successful coordination on the high price occurs
more often in Algorithm Uncertain and Algorithm Certain. In supergame
3, the two extremes are conspicuous: Algorithm Uncertain with roughly
50% competition, whereas Human Certain involved almost 80% compe-
tition. The share of outcomes with miscoordination (failed collusion) is
remarkably small in all treatments, meaning that subjects quickly coordi-
nate on either the cooperative or the competitive outcome. This is also
apparent from the quick drop in cooperation in the first five periods (see
Figure A.1 in the Additional Material).

6.2 Treatment Differences

We now systematically test our hypotheses and make statistically reliable
statements about treatment effects. Throughout, we take the possible de-
pendence of observations (individual cooperation decisions) into account
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using bootstrapping standard errors at the session level.25 See Cameron
et al. (2008).

Table 5 shows the results of a linear probability model and highlights
the main treatment effects we observe. Our dependent variable is whether
or not a firm (participant or algorithm) cooperates in a given period. We
run two sets of regressions. First, we include as explanatory variables
only Algorithm (reflecting Algorithm Uncertain and Algorithm Certain)
and Certain (reflecting Algorithm Certain and Human Certain). Second,
we use the three treatments Algorithm Uncertain and Human Certain
and Algorithm Certain as explanatory variables. In all regressions, Hu-
man Uncertain serves as the baseline treatment, reflected in the constant.
We further include dummies for the initial and terminal periods of play.
We report the results separately for the three supergames and jointly for
all supergames where we add a cardinal variable for supergame (equal to
zero for supergame 1, such that the constant reflects supergame 1).

25As an alternative specification, we collapsed the data at the session/period level,
such that we obtained one average cooperation rate per session and period, and we
handled the data as a panel with random effects at the session level. The results are
virtually the same in terms of statistical significance. Put differently, our results are
also robust with this more conservative approach.
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Supergame 1 Supergame 2 Supergame 3 All

Algorithm -0.0225 0.108** 0.185** 0.0847
(0.0528) (0.0526) (0.0813) (0.0516)

Certain 0.0706 0.000116 -0.0292 0.0166
(0.0542) (0.0515) (0.0833) (0.0523)

Human Certain 0.100 0.0691 0.0466 0.0733
(0.0966) (0.0839) (0.112) (0.0818)

Algo Uncertain 0.00490 0.172*** 0.255** 0.137**
(0.0566) (0.0654) (0.110) (0.0556)

Algo Certain 0.0486 0.109* 0.157* 0.102**
(0.0569) (0.0635) (0.0898) (0.0468)

Periods 1-5 0.0867*** 0.0867*** 0.129*** 0.129*** 0.116*** 0.116*** 0.110*** 0.110***
(0.0234) (0.0235) (0.0177) (0.0173) (0.0199) (0.0198) (0.0133) (0.0132)

Periods 20-25 -0.0524*** -0.0524*** -0.0522*** -0.0522*** -0.129*** -0.129*** -0.0821*** -0.0821***
(0.0159) (0.0159) (0.0160) (0.0159) (0.0292) (0.0289) (0.0108) (0.0107)

Supergame 0.0968*** 0.0968***
(0.0216) (0.0210)

Constant 0.133*** 0.118*** 0.245*** 0.211*** 0.268*** 0.231*** 0.120*** 0.0923***
(0.0405) (0.0372) (0.0518) (0.0561) (0.0625) (0.0531) (0.0401) (0.0309)

Obs. 7,416 7,416 6,180 6,180 6,489 6,489 20,085 20,085
R2 0.025 0.027 0.029 0.033 0.057 0.063 0.062 0.066

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 5: Treatment effects, all periods, linear probability model.
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The impact of Algorithm in the regressions reported in Table 5 is pos-
itive and statistically significant from supergame 2 onward. So, when ana-
lyzing them jointly, the two Algorithm treatments cooperate better than
the two Human treatments. When we compare the individual treatments
directly, we find that Algorithm Uncertain and Human Uncertain differ
significantly, consistent with Hypothesis 1 (SG 2, 3 and all). Regarding
Hypothesis 3, we observe that Algorithm Certain and Human Certain do
not differ significantly (post-hoc test, p > 0.366, any SG)

Result 1. The Algorithm treatments jointly exhibit significantly higher co-
operation rates than the Human treatments. Cooperation rates are signif-
icantly higher in Algorithm Uncertain compared to Human Uncertain. We
find no statistically significant effects when comparing Algorithm Certain
and Human Certain.

Moving on to the comparison of Certain and Uncertain treatments
(Exploratory Research Question 2), we find that the general impact of
Certain is positive, small, and insignificant. Likewise, Human Uncertain

does not differ from the baseline Human Certain. Running post-hoc tests,
we further find no significant differences between Algorithm Uncertain and
Algorithm Certain (p > 0.153 in any SG). Evidence for the way beliefs
affect behavior can nevertheless be detected. The mean cooperation rates
correspond to the notion than human participants maintain skeptical ex-
pectations about the algorithms decisions. For the Algorithm treatments,
we find (insignificantly) more cooperation in Uncertain than in Certain
in supergames two and three and all supergames. For the Human vari-
ants, subjects were more cooperative in Certain than in Uncertain in all
supergames. Thus, human subjects become less cooperative when they
suspect that one of the opponents is an algorithm compared to when this
is not the case, and when they know for sure that one of the opponents is
controlled by an algorithm as compared to the case in which they only have
this suspect. As outlined above, a lack of reciprocity towards the algorithm
is likewise an appropriate interpretation of this result.

Result 2. We find no statistically significant effects between the Uncertain
and the Certain treatments.
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Another piece with suggestive evidence on expectations comes from the
incentivized guess in the Uncertain treatments. This is what we analyze
in detail next.

6.3 Beliefs about the Presence of an Algorithm

Guess

Algorithm -12.19** -8.663**
(4.916) (4.374)

Sum of miscoordinated outcomes 1.303***
(0.361)

Constant 58.06*** 43.78***
(3.920) (5.216)

Obs. 131 131
R2 0.027 0.072

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 6: Incentivized guess about the presence of an algorithm in the
Uncertain treatments, linear probability model.

In the two Uncertain treatments, we asked participants (incentivized)
at the end of the experiment about their beliefs of whether one of the
firms was equipped with an algorithm. Subjects had to state a probability
(a number between zero and 100) that an “algorithm was present in the
experiment.”

It turns out that subjects in Human Uncertain maintain an average
belief of 58.05%, whereas those in Algorithm Uncertain have a belief of
45.87%. That is, participants are more inclined to believe an algorithm was
present when this was not the case. Table 6 (first column) shows the results
of a linear probability regression with data from Algorithm Uncertain and
Human Uncertain and algorithm as an explanatory variable. The variable
algorithm is negative and significant (p < 0.05).

Result 3. Guesses about an algorithm being present in the market are
significantly lower in Algorithm Uncertain compared to Human Uncertain.

One possible explanation for this surprising finding is that participants
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associate cooperation with human behavior and not an algorithm.26 Coop-
eration rates in Algorithm Uncertain are significantly higher than in Hu-
man Uncertain, and the lower performance of Human Uncertain is clearly
associated with a higher belief of an algorithm being present. When we add
as an explanatory variable to the regressions in Table 6 (second column) the
number of miscoordinated outcomes (one or two firms chooses plow and at
least one firm chooses phigh) which a participant experiences during the en-
tire course of the experiment, this variable is positive and highly significant
(p < 0.01), and the magnitude of the algorithm coefficient decreases, but is
still significant (p < 0.05). We take this as evidence that the participants
expect the algorithm to be more competitive than humans.27

6.4 Differences Between Human and Algorithmic
Play

A first difference between human and algorithmic play is that the pTFT

strategy begins a supergame by choosing the high price with probability
one, in contrast to the average human subject. The data indicate that the
algorithm has a substantial effect on the cooperation rate in the first period
throughout. This effect is noteworthy because of the significance of period-
one behavior for overall cooperation. However, we refrain from stating
this result formally because it is immediate from the way the algorithm is
programmed.

Figure 3 is an alluvial flow diagram that illustrates how humans com-
pare to the algorithm with respect to individual decisions. It is based on
decisions by humans only, using data from all treatments, periods 1 to 19,

26According to Lee (2018), participants rate algorithmic decisions as less fair, trust al-
gorithmic decisions less, and feel less positive about algorithmic decisions when it comes
to tasks requiring human skills. With mechanical tasks, the fairness and trustworthiness
of algorithms were attributed to their perceived efficiency and objectivity.

27Quotes from a post-experimental questionnaire are consistent with this conclusion.
We emphasize that these subjects did not play a Human variant, so the comparisons
they draw reflect their beliefs: “Nice experiment, the inclusion of the algorithm was a
clever idea and could damage the mutual trust between the companies so much that they
basically sold low even though this was against their own interests”, or “The introduction
of the algorithm makes it much harder to communicate about prices, as ideally each
company sets a high price so that the market as a whole makes the most profit. However,
since the algorithm is (or at least seems to be) unpredictable in such a short period of
time, this is much more difficult to communicate.”
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Figure 3: Alluvial flow diagram of choices by human subjects (all supergames,
periods 1 to 19).

and all supergames.28 The figure shows how participants’ decisions in pe-
riod t−1 (left-hand side of the figure) map into market outcomes (middle),
and how conditional on these outcomes decisions in period t emerge. The
market outcome is defined as the number of phigh choices of all players in
a market, including the subject herself and possibly the algorithm.

Let us be more specific. Humans choose phigh at a rate of roughly 30%
(light segment on the left) and, accordingly, plow at 70% (dark segment).
Due to the high degree of coordination in markets, outcomes labeled 0
(“all plow”) and 3 (“all phigh”) result most frequently. If the coordination
in markets fails, outcomes 1 (“one phigh, two plow”) and 2 (“two phigh, one
plow”) result. The stream from the gray outcome boxes then indicates how
humans decided conditional on outcome. Their own t − 1 decision can be
identified by the color (light blue for phigh and dark blue for plow).

The algorithm always chooses phigh if both competitors previously chose
28See Table A.4 in the Additional Material, where we provide the same analysis for the

individual treatments. Differences between treatments are minor. We dropped the data
from period 20 on because we are not specifically interested in the end-game behavior
humans exhibit.
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phigh—how do humans behave here? Overall, it turns out human partici-
pants are also highly likely to play phigh (92.7%). But there are substantial
differences when the own prior choice is taken into account. Provided that
they themselves previously played phigh, human subjects almost always play
phigh again (99.1%).29 When we look at the human subjects who played
plow while both their competitors chose phigh (“two phigh, one plow”), we
see that roughly 29.3% cooperate, whereas the algorithm would play 100%
phigh here, too.

Whereas Figure 3 is based on data from all treatments, there are some
minor treatment differences regarding the observations where both com-
petitors previously chose phigh. As Table A.4 indicates, cooperation rates
go down when one opponent could be an algorithm, consistent with the
hypothesis that humans maintain skeptical beliefs regarding the algorithm,
or that they do not exhibit reciprocal behavior towards the computer.30

Specifically, human subjects become (insignificantly) less cooperative when
they suspect that one of the opponents is an algorithm (Human Certain vs.
Human Uncertain), and when they know for sure that one of the opponents
is controlled by an algorithm (Algorithm Certain vs. Algorithm Uncertain
and Human Certain vs. Algorithm Certain). It appears that the stronger
the belief is that one of the opponents is an algorithm, the less cooperative
play becomes.

Differences between humans and the algorithm also become apparent
in markets with mixed outcomes where one competitor chose phigh and
the other one plow in t − 1. The probability that the algorithm will play
cooperatively is 50%, whereas that of the human subjects is only 26.2%.
Again, Figure 3 shows the differences between subjects who played phigh

previously and those who chose plow.31 The cooperatively playing subjects
stuck to their strategy with a probability of 61.2%, which is significantly

29In 26 out of 3,007 observations, these subjects chose plow, which is too little to be
visible in Figure 3.

30A referee suggested the notion that the potential presence of an algorithm offers
humans a moral wiggle room to justify deviations, which is similar in spirit to the lack
of reciprocity.

31For two-player prisoner’s dilemma experiments, Breitmoser (2015) suggests that sub-
jects play a “semi-grim” strategy, such that subjects randomize across choices regardless
of their own previous choice.
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different from the 50% rate of the algorithm (p < 0.001).32 But such
attempts to establish collusive conduct are hampered by the behavior of
competitive rivals who rarely choose the high price (9.8%), which is likewise
significantly different from the 50% rate of the algorithm (p < 0.001).

How about the potentially negative effect of the algorithm when both
rival firms chose plow previously? In this case, the algorithm would never
choose phigh. But this does not differ much for human subjects who coop-
erate with 3.7 %. Conspicuously, the cooperative playing subjects continue
their strategy with a relatively high probability (41.9%), while the compet-
itive rivals play p high only in very few cases (1.7%).

Overall, the probability of successful collusion, irrespectively of the pre-
vious market outcome, is higher in Algorithm (27.4%) than in Human
treatments (18.3%). The algorithm is less cooperative than the human
subjects when it comes to attempts to establish a collusive outcome, but
much more cooperative than subjects who chose plow before. It seems that
the human subjects rarely modify their strategy, trying instead to avoid a
change in their price decision.

6.5 Profits

If the algorithm treatments exhibit more cooperation, this suggests that all
firms benefit in terms of higher profits. As we see more cooperation, the
mean profits in Algorithm are actually higher than in Human , so subjects
earn more if an algorithm is present. In Table 7 in the Appendix, we analyze
this systematically. The table provides the results of linear regressions
where the dependent variable is the profit subjects earn from period 6
to 19. The explanatory variables include three treatment variables, such
that Human Uncertain is reflected by the constant. Algorithm Uncertain
is significant except in the first supergame. In a simpler regression where
Algorithm and Certain replace the three treatment variables, the positive
effect of Algorithm on profits is significant in the second (p < 0.1) and
third supergame (p < 0.05).

By distinguishing between humans and algorithms, we can analyze who
32Linear regression on cooperation rate when one rival chose phigh, the other one plow,

and the own choice was phigh (plow, respectively) in t−1, bootstrapped standard errors.
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Figure 4: Profits in percent above Nash (periods 6 to 19).

benefits most from the presence of the algorithm. Figure 4 measures profits
relative to static Nash earnings (0%) and to perfect collusion (100%).33 We
see that subjects equipped with an algorithm earn substantially less than
their competitors in every supergame. We add to the regressions in 7 the
dummy variable “role” which equals one when the player is an algorithm.
Taking all supergames into account, the difference is statistically significant
(p < 0.01). The negative effect of “role” is also significant in the first
(p < 0.1) and the third supergame (p < 0.001). Although the algorithm
helps to increase the group’s profit, it performs significantly worse than
their competitors. This suggests a coordination problem in that no firm
wants to adopt the algorithm first.

Result 4. Profits are significantly higher in the Algorithm treatments
compared to the Human treatments. In the Algorithm treatments, partic-
ipants represented by an algorithm earn significantly less than participants
who decide themselves for their firm.

33Formally, the index in Figure 4 is defined as (observed profit −
Nash profit)/(collusive profit − Nash profit).
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7 Conclusion

In this paper, we analyze the impact of algorithms on collusion in hybrid
markets where humans interact with algorithms. The analysis of human-
computer interaction is important because most markets in the field are
heterogeneous and firms cannot be sure of whether their opponents are us-
ing algorithms for their pricing decision, nor do they know which type of
algorithm competitors might use.34 Recent literature (British Competition
and Markets Authority, 2018; Musolff, 2021; Wieting and Sapi, 2021) inves-
tigates relatively simple algorithms and suggest that such straightforward
pricing rules are (at least currently) empirically dominant in the field and
may actually increase the risk of tacit collusion. This raises the question of
impact algorithms have on hybrid markets where the algorithms interact
with humans.

We study these issues in experimental markets with three firms where
one firm is equipped with an algorithm. The algorithm, if present, plays
proportional tit-for-tat (Axelrod, 1984; Hilbe et al., 2015), a simple and
transparent strategy. We further vary whether the human participants
know (in a non-deceptive way) about the presence of the algorithm. Par-
ticipants of the experiments played three indefinitely repeated games.

We report three main sets of results. First, regarding the competitive-
ness of markets, we find that our algorithm significantly increases prices,
consistent with a repeated-game model that accounts for strategic risk
(Blonski et al., 2011; Blonski and Spagnolo, 2015; Dal Bó and Fréchette,
2011, 2018; Green et al., 2015). This finding confirms the anti-competitive
potential algorithms have, even when interacting with humans. Moreover,
it suggests that the collusive effects of algorithms are unlikely to be fully
mitigated by the presence of humans. In other words, we cannot rely on
humans to discipline the collusive behavior of algorithms.

Our second finding concerns participants’ expectations when they in-
teract with an algorithm. Largely, it appears that expectations (the
(un)certainty that an algorithm is around) do not significantly affect pric-

34Explicitly communicating and agreeing on the use of algorithms has been penalized
as a violation of cartel law. See Poster Cartel case: US Department of Justice, Apr. 6,
2015, Press Release no. 15-421, and British Competition and Markets Authority, Aug.
12, 2016, Case 50223.
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ing. Intriguingly, when we elicit post-experiment beliefs about the nature
of the co-players, participants are significantly more inclined to believe an
algorithm was present when this was not the case. Specifically, humans ap-
pear to associate miscoordination with algorithmic play, whereas, in fact,
the algorithm more frequently leads to successful cooperation. These re-
sults are broadly consistent with findings on algorithm aversion (Dietvorst
and Bharti, 2020; Dietvorst et al., 2016, 2015). The results are also con-
sistent with the notion that subjects behave reciprocally to other humans,
but not to an algorithm (Charness and Rabin, 2002; Iriş and Santos-Pinto,
2013; Mahmoodi et al., 2018; Zonca et al., 2021).

A third set of findings concerns the profitability of employing an algo-
rithm. We find that the firms for which the algorithm decided earn signif-
icantly less profit. This suggests that firms want their rivals to adopt the
algorithm first: Firms face a coordination problem when it comes to dele-
gating decisions to algorithms. Tacit collusion seems feasible, but requires
algorithms with a certain degree of cooperative commitment. Therefore, a
firm must be willing to accept setup costs. That said, this effect could be
moderated by other benefits of algorithms, such as a higher frequency of
pricing or better demand forecasting (Brown and MacKay, 2022; Miklós-
Thal and Tucker, 2019). The coordination problem seems mitigated by
the fact that algorithms are generally on the rise, but we note that a ris-
ing share of algorithmic players per se does not preclude the coordination
problem.

Our results suggest promising topics for future research. One possi-
ble extension would be not to impose the use of the algorithm exogenously,
but instead to let subjects choose whether they want to employ algorithms.
Algorithm aversion may preclude this, but demonstrating the force of algo-
rithms may cure this reluctance. In addition, the aforementioned coordina-
tion problem might be significant. One may further consider experiments
where subjects decide which algorithm to employ.
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Appendix

Proof that GT is Subgame-perfect

In this Appendix, we prove that GT is also a subgame-perfect strategy
when one of the three players is the pTFT algorithm. Demonstrating that
the incentive constraint (2) is met is generally not sufficient for GT to be
subgame-perfect.35

Consider strategy profiles (pi, pj, pk). Players i and j are GT players,
and player k is the pTFT player. Histories may end in 23 = 8 different
profiles. In equilibrium, players play (phigh, phigh, phigh) throughout, and in
the main text, we show that (2) ensures i and j prefer not to deviate. We
next analyze out-of-equilibrium histories ending in the other seven profiles.

A straightforward case are histories ending in (plow, plow, plow). All play-
ers defect in t + 1, and deviating (to phigh) does not pay for player i, con-
sistent with GT . Likewise, following (plow, plow, phigh), all players defect
in t + 1, ensuring GT is a best response in the subgames following this
outcome.

The five remaining profiles have in common that at least one player
chooses plow and at least one player selects phigh. These five profiles
are (phigh, plow, · ), (phigh, phigh, plow), and (plow, phigh, · ). In all
cases, the pTFT algorithm cooperates in t + 1 with at least 50% (in the
(phigh, phigh, plow) case with 100%), whereas the GT players should choose
plow. A possible one-off deviation for a GT player is phigh in the next period.
But since the second GT player will defect in t + 1, such a deviation would
yield a zero payoff, whereas sticking to GT (by choosing plow from t+1 on)
would yield (at least) πn. It follows that GT is also a best response in the
subgames following these five profiles. Hence, GT is also subgame-perfect
in the presence of the pTFT player, provided (2) is met.

35As an aside, we note that tit-for-tat strategies themselves are often not subgame-
perfect (for two-player examples, see Osborne (2004)). But since in our case the algo-
rithm is programmed to play pTFT , it will not deviate.
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Profits
Supergame 1 Supergame 2 Supergame 3 All

Human Certain 35.09 35.09 17.83 17.83 20.65 20.65 24.52 24.52
(38.51) (38.51) (27.51) (27.51) (42.24) (42.24) (28.59) (28.59)

Algo Uncertain 4.473 8.283 59.46*** 62.32*** 96.29** 99.47** 53.41*** 56.69***
(19.63) (19.61) (21.44) (21.68) (42.87) (42.80) (19.42) (19.49)

Algo Certain 15.96 19.77 22.22 25.08 55.67 58.84* 31.28* 34.57**
(23.39) (23.14) (21.19) (21.23) (33.86) (33.94) (16.51) (16.60)

Role -11.43* -8.571 -9.524*** -9.841***
(6.521) (5.633) (1.045) (3.542)

Supergame 36.84*** 36.84***
(7.623) (7.623)

Constant 499.2*** 499.2*** 542.2*** 542.2*** 541.3*** 541.3*** 490.7*** 490.7***
(13.48) (13.48) (18.06) (18.06) (20.42) (20.42) (8.487) (8.487)

Observations 4,326 4,326 4,326 4,326 4,326 4,326 12,978 12,978
R-squared 0.005 0.005 0.015 0.015 0.042 0.043 0.037 0.037

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 7: Total profits, periods 6 to 19, OLS regression.

39



A Additional Material

Session details

Date Session # Part. # Markets Laba COVID-19

28 August, 2019 3.1 21 7 Düsseldorf 0
11 September, 2019 4.1 24 8 Düsseldorf 0
11 September, 2019 3.2 21 7 Düsseldorf 0
12 September, 2019 4.2 18 6 Düsseldorf 0

04 March, 2020 3.3 24 8 Bonn 0
05 March, 2020 1.1 21 7 Bonn 0
05 March, 2020 1.2 21 7 Bonn 0
05 March, 2020 2.1 30 10 Bonn 0
06 July, 2020 2.2 18 6 Düsseldorf 1

05 August, 2020 1.3 18 6 Düsseldorf 1
02 September, 2020 2.3 15 5 Düsseldorf 1
22 September, 2020 4.3 18 6 Bonn 1
13 October, 2020 4.4 18 6 Bonn 1
14 October, 2020 2.4 12 4 Bonn 1
14 October, 2020 3.4 18 6 Bonn 1
16 October, 2020 1.4 12 4 Düsseldorf 1

Table A.1: Session Details
aAs a show-up fee, the participants received 5 euros in Bonn and 4 euros in Düsseldorf.

During the COVID-19 pandemic, the fee was increased to 8 euros in Düsseldorf from
mid-July 2020 on. This in line with Schulz et al. (2019), who find that moderately
different show-up fees had no influence on the behavior of the participants.
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Overview Using Data from All Periods

Figure A.1: Cooperation rates over time (all periods).

Supergame 1 Supergame 2 Supergame 3 All

Human U 0.126 0.241 0.246 0.200
(0.331) (0.428) (0.431) (0.400)

Algo U 0.130 0.412 0.502 0.337
(0.337) (0.492) (0.500) (0.473)

Human C 0.226 0.310 0.293 0.273
(0.418) (0.463) (0.455) (0.446)

Algo C 0.174 0.350 0.404 0.302
(0.379) (0.477) (0.491) (0.459)

Standard deviations in parentheses.

Table A.2: Average cooperation rates (all periods).
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Data of Human Subjects Only
Supergame 1 Supergame 2 Supergame 3 All

Human U 0.123 0.221 0.218 0.187
(0.328) (0.415) (0.413) (0.390)

Algorithm U 0.112 0.395 0.504 0.337
(0.316) (0.489) (0.500) (0.473)

Human C 0.233 0.275 0.277 0.262
(0.423) (0.447) (0.448) (0.440)

Algorithm C 0.159 0.297 0.378 0.278
(0.366) (0.457) (0.485) (0.448)

Standard deviations in parentheses.

Table A.3: Average cooperation rates (human subjects, periods 6 to 19).

Rival behavior in t − 1
Two Low High/Low Two High Total

Human U 0.0286 0.212 0.962 0.187
(0.167) (0.409) (0.192) (0.390)

Algorithm U 0.0251 0.178 0.987 0.337
(0.157) (0.384) (0.115) (0.473)

Human C 0.0273 0.240 0.974 0.262
(0.163) (0.428) (0.158) (0.440)

Algorithm C 0.0242 0.213 0.948 0.278
(0.154) (0.411) (0.223) (0.448)

Total 0.0267 0.216 0.969 0.260
(0.161) (0.412) (0.172) (0.438)

Standard deviations in parentheses.

Table A.4: Average cooperation rates with respect to the previous choices
of rivals 1 and 2 (human subjects, period 6-19).
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Treatments Effect with Probit Model
Supergame 1 Supergame 2 Supergame 3 All

Algorithm -0.0907 0.0284 0.304* 0.490** 0.509** 0.704** 0.258 0.436**
(0.223) (0.293) (0.156) (0.203) (0.235) (0.311) (0.169) (0.172)

Certain 0.294 0.406 0.00233 0.210 -0.0760 0.147 0.0610 0.257
(0.224) (0.356) (0.149) (0.258) (0.237) (0.360) (0.166) (0.274)

Algorithm × certain -0.220 -0.378 -0.400 -0.357
(0.491) (0.296) (0.501) (0.337)

Periods 1 to 5 0.320*** 0.321*** 0.349*** 0.350*** 0.309*** 0.311*** 0.320*** 0.322***
(0.0968) (0.0973) (0.0493) (0.0492) (0.0578) (0.0572) (0.0420) (0.0410)

Periods 20 to 25 -0.252*** -0.254*** -0.160*** -0.163*** -0.395*** -0.398*** -0.322*** -0.325***
(0.0841) (0.0841) (0.0555) (0.0562) (0.0798) (0.0806) (0.0483) (0.0476)

Supergame 0.300*** 0.301***
(0.0647) (0.0633)

Constant -1.122*** -1.184*** -0.687*** -0.792*** -0.625*** -0.737*** -1.103*** -1.206***
(0.175) (0.169) (0.159) (0.185) (0.186) (0.183) (0.147) (0.119)

Obs. 7,416 7,416 6,180 6,180 6,489 6,489 20,085 20,085
Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table A.5: Treatment effects, probit model.
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Robustness Check for Impact of Lab Location and COVID-19 Pandemic

Supergame 1 Supergame 2 Supergame 3 All

Algorithm -0.0225 0.00809 0.108** 0.178* 0.185** 0.255 0.0847 0.140
(0.0528) (0.0964) (0.0526) (0.0959) (0.0813) (0.171) (0.0516) (0.0912)

Certain 0.0706 0.101 0.000116 0.0727 -0.0292 0.0453 0.0166 0.0744
(0.0542) (0.119) (0.0515) (0.104) (0.0833) (0.154) (0.0523) (0.0982)

Algorithm x Certain -0.0593 -0.140 -0.142 -0.111
(0.166) (0.132) (0.237) (0.142)

Coronaa 0.00746 0.0185 -0.00497 0.00684
(0.0898) (0.0702) (0.138) (0.0754)

Laboratoryb 0.00513 -0.0118 0.0184 0.00421
(0.0824) (0.0625) (0.114) (0.0640)

Periods 1 to 5 0.0867*** 0.0867*** 0.129*** 0.129*** 0.116*** 0.116*** 0.110*** 0.110***
(0.0234) (0.0234) (0.0177) (0.0172) (0.0199) (0.0198) (0.0133) (0.0132)

Periods 20 to 25 -0.0524*** -0.0524*** -0.0522*** -0.0522*** -0.129*** -0.129*** -0.0821*** -0.0821***
(0.0159) (0.0159) (0.0160) (0.0158) (0.0292) (0.0289) (0.0108) (0.0107)

Supergame 0.0968*** 0.0968***
(0.0216) (0.0211)

Constant 0.133*** 0.111 0.245*** 0.207** 0.268*** 0.224 0.120*** 0.0859
(0.0405) (0.0952) (0.0518) (0.0917) (0.0625) (0.137) (0.0401) (0.0838)

Obs. 7,416 7,416 6,180 6,180 6,489 6,489 20,085 20,085
R2 0.025 0.027 0.029 0.034 0.057 0.063 0.062 0.066

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table A.6: Laboratory location and COVID-19 effects, linear probability model.
aCorona = 1 if the session was conducted under hygiene rules of the pandemic.
bLaboratory = 1 if the session was run in Bonn.
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Instructions

Welcome to the experiment

Thank you for your participation in this experiment. Please read the in-
structions carefully. For your participation in today’s experiment, you will
receive 5 euros. During the experiment, you will have the opportunity
to earn an additional amount of money. The additional amount will de-
pend on your decisions and the decisions of the other participants. A short
questionnaire will follow the experiment. From now on, please stop any
conversations with your neighbors. Turn off your cell phone and remove
everything from your table that you do not need for the experiment. If
you have any questions, please raise your hand and we will answer them
one-on-one.

Instructions

In this experiment, you will take the role of a firm in a market. Each
market consists of three firms. Each of the three firms is represented by a
human participant.

Human Certain

The three participants decide for themselves the price for which they
want to sell their goods for their firm and are paid the profit their
firm makes in cash at the end of the experiment.

All firms offer 24 units of a comparable good with no cost of produc-
tion, and with 24 consumers demanding one unit of the good. Consumers’
willingness to pay for a good ranges from 1 to 100 ECU (Experimental Cur-
rency Units), where 1,000 ECU = 1 Euro. At the beginning of each period,
all firms have the option to set a high price (100 ECU) or a low price (60
ECU) for their good. The company which alone has set the lowest price
serves the entire demand. All other companies will not sell any of their
units. If several companies have set the same lowest price, the demand is
divided equally among them. The following three examples illustrate the
mechanism of the market:
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Both
competitors
choose the
high price

One competitor chooses
the high price, the other
competitor chooses the

low price

Both
competitors
choose the
low price

You choose
the high price

(100 ECU)
800 ECU 0 ECU 0 ECU

You choose
the low price

(60 ECU)
1440 ECU 720 ECU 480 ECU

Example 1

You are firm A and you decide to charge a high price for the units of your
good (100 ECU). Firm B makes the same decision, whereas C sets a low
price (60 ECU). Firm C now has the cheapest sales offer and will serve the
complete demand. Accordingly, firm C will earn (60 ECU ∗24 units sold
=) 1, 440 ECU. Firms A and B will not sell any units and will therefore
earn 0 ECU in this period.

Example 2

You are firm A and you decide to charge a low price for the units of your
good (60 ECU). Firms B and C make the same decision. Firms A, B, and
C have now all made the lowest sales offer and will each sell 1/3 of the
demand, thus 24/3 = 8 units of their goods. Accordingly, each firm will
earn (60 ECU ∗8 units sold =) 480 ECU.

Example 3

You are firm A and you decide to charge a high price for the units of your
good (100 ECU). Firms B and C make the same decision. Firms A, B,
and C have now all made the most favorable sales offer and will each sell
1/3 of the demand, thus 24/3 = 8 units of their goods. Accordingly, each
firm will earn (100 ECU ∗8 units sold =) 800 ECU. Thus, your earnings
depend on your own and the other firms’ pricing decisions. This results in
the following profit table for you:
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After all the firms have made their choice, you will be informed about
the chosen prices of the other two firms and about your profit.

Periods and rounds

In total, you will play at least 20 periods with the other two firms. Random
chance will decide whether or not additional periods will be played in the
sequel. With a probability of 70% the round will continue with another
period; with a probability of 30% the round will end. The round continues
until random chance determines the end. In each period of a round, you
will be playing with the same participants in a market. At the end of these
20 + x periods, all participants are randomly assigned to new markets and
a new round begins. The three participants in the new markets will then
stay together again for 20 + x periods.

In total, you will play three rounds of 20+x periods. After three rounds,
the experiment ends and a short questionnaire follows.

Human Uncertain and Algorithm Uncertain

Market decisions by algorithms

In your markets, at least two participants decide for themselves the
price for which they want to sell their goods for their firm and are
paid the profit their firm makes in cash at the end of the experiment.
With 50% probability, the decisions for the third firm will
also be made by one participant. Also with 50% probability,
the third firm will be equipped with an algorithm in all
rounds, which will make the necessary pricing decisions for
the participant. In this case, the participant does not make any
decisions, but still gets paid in cash the profit that her firm makes.
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Algorithm Certain

Market decisions by algorithms

In your markets, two participants decide for themselves the price
for which they want to sell their goods for their firm and are paid
the profit their firm makes in cash at the end of the experiment.
The third firm will be equipped with an algorithm in all
rounds, which will make the necessary pricing decisions for
the participant. In this case, the participant does not make any
decisions, but still gets paid in cash the profit that her firm makes.

Payout

For your payout, one of the three rounds will be randomly selected. The
ECU earned there will be paid to you additionally in euros.
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